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Abstract. The internal stresses occurring around domain walls can cause deformation of the
crystal surface. The surface distortions have been calculated for the case of antiphase boundaries
in tetragonal crystals. In KSCN a bump-shaped deformation of the surface occurs, with a height
less than 1Å. This effect is much smaller in Hg2Br2 but, besides a bump, a valley can also
appear depending on the orientation of the antiphase boundary. The antiphase boundaries, the
observation of which is difficult, could be revealed by such deformations of the crystal surface.

1. Introduction

Domain walls are very difficult to access because they are too narrow for most direct
experimental methods. Ferroelastic domain walls (FDWs) can be visualized indirectly
by polarized light which distinguishes the bulk domains. This is not so in the case of
antiphase boundaries (APBs), since they separate two domains possessing identical tensorial
properties. APBs are observed by destructive etching of the crystal surface [1, 2] or some
other methods, e.g. x-ray topography [3] and electron microscopy [4–7]. It was recently
shown that displacements of atoms in the APB centre result in internal strains localized
around the APB plane [8–10]. One can naturally expect a bump-shaped deformation of the
crystal surface in the vicinity of its intersection with the APB, owing to the relaxation of
such stresses. The phenomenon described offers direct observation of APBs using scanning
microscopy methods, but it will apparently depend on the magnitude of the surface distortion.
We report here quantitative determination of the deformation, and its dependence on the
temperature and on the orientation of domain wall, in the molecular crystals KSCN [2, 9]
and Hg2Br2 [9].

The substances under consideration are improper ferroelastics undergoing a tetragonal-
to-orthorhombic phase transition with the free-energy density [9]

f = f0(p, q)+ fc(uij , p, q)+ fE(uij )+ fG(∂ip, ∂iq) (1)

with

f0 = 1
2α(p

2+ q2)+ 1
4β
′(p4+ q4)+ 1

4γ
′p2q2

fC = l′1(p2+ q2)(u11+ u22)+ l′6(p2− q2)u12+ l′3(p2+ q2)u33

fE =
∑

cijkluijukl

fG = 1
2g((∇p)2+ (∇q)2)

where p, q is the two-component order parameter (OP),f0 is the pure OP part,fC is
linear-quadratic coupling between strainsuij and the OP,fE is a quadratic form of strains
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uij andfG is a gradient term. The values of all coefficients of the free-energy expansion,
which we use in our calculation, are for both crystals tabulated in [9]. The thermodynamic
equilibrium state is represented by solution of the following system of equations [8]: the
Lagrange–Euler equations

d

dxi

∂f

∂(∂p/∂xi)
− df

dp
= 0

d

dxi

∂f

∂(∂q/∂xi)
− df

dq
= 0 (2a)

and the equations of mechanical equilibrium given by

∂jσij = 0 (2b)

where the stress components

σij = ∂f/∂uij . (2c)

Following the notation of Lechnickij [11],

σx = σ11 σy = σ22 σz = σ33 τxy = σ12 τxz = σ13 τyz = σ23

and

εx = u11 = ∂U/∂x εy = u22 = ∂V/∂y εz = u33 = ∂W/∂z (2d)

γxy = 2u12 = ∂U/∂y + ∂V/∂x (2e)

γxz = 2u13 = ∂U/∂z + ∂W/∂x (2f)

γyz = 2u23 = ∂V/∂z + ∂W/∂y (2g)

where(U, V,W) is the vector field of total displacements.
One should solve system (2) with appropriate boundary conditions with respect to the

OP and the displacements(U, V,W).

(a) (b)

Figure 1. (a) The APB plane is perpendicular to x and makes an angleφ with the tetragonal
axes. (b) Tetragonal and orthorhombic axes.
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2. Antiphase boundaries in a boundless crystal

Let us consider an APB denoted 11–12, between domains 11 = (−p0, 0) and 12 = (p0, 0).
The APB plane is perpendicular tox and its orientation is characterized by the angleφ with
respect to the tetragonal axisxtetr , (figure 1). For the crystal extended to infinity (without
surfaces), one obtains a kink-type solution for equations (2) [9]:

p(x) = p0 tanh(2x/dAPB) (3)

with the position-independent strain components

εz = ε∞z εy = ε∞y γyz = 0 (4)

and corresponding non-zero internal stressesσz andσy ; the explicit form of the former is
[9]

σz = (p2− p2
0)
A

p2
0

. (5)

The magnitudeA ∼ (TC − T ) and the wall thicknessdAPB ∼ (TC − T )−1/2 also depend on
the orientation of APB (figure 2). The remaining components of the stress tensor are zero.
The analytical expressions forA anddAPB were obtained in [9].

Figure 2. The angular dependence of the APB thicknessd = dAPB and the amplitudeA of the
internal stress componentσz for T = T − 5 K in KSCN.
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3. Intersection of an antiphase boundary with the surface

Let us assume a semi-infinite crystal with the upper surface being the tetragonal plane
perpendicular to thez axis. The solution (3)–(5) obtained for the infinite crystal is again
valid in the half-spacez 6 0, provided that an external position-dependent stress equal to
σz inserted atz = 0 keeps the crystal surface planar. The stress-free surface is obtained by
the insertion of the opposite stress component [12, 13]

pz = −σz = A

cosh(2x/dAPB)2
(6)

at z = 0. For simplicity, we assume the profile (3) to be unchanged up to the surface, i.e.
only the elastic termfE in (1) is considered. Then the elastic properties are described by
the bare elastic moduli (the componentssij referred to the tetragonal system, oraij (φ) in
the coordinatesx, y, z rotated at an angleφ).

Our aim is now to calculate the deformation of the planar crystal surface loaded with
the stress (6). The problem can be analytically treated by using an approximate algebraic
expression instead of (6) [9]:

pz = A c4

(c2+ x2)2
c = 2dAPB

π
. (7)

The solution of the two-dimensional problem, in which all quantities depend ony and
z only, can be solved using the method worked out by Muschelischvili [14] and for the
anizotropic case by Lechnickij [11]. Following Lechnickij we introduce the reduced elastic
moduli

βij = aij − ai2aj2/a22 i, j = 1, 3, 4, 5, 6. (8)

The characteristic equation

l4(µ)l2(µ)− l3(µ)2 = 0 (9)

with

l4(µ) = β11µ
4+ (2β13+ β55)µ

2+ β33

l3(µ) = β16µ
3

l2(µ) = β66µ
2+ β44

has six complex rootsµ1, µ2, µ3, µ
∗
1, µ

∗
2, µ

∗
3, and one defines also

λ1 = −l3(µ1)/ l2(µ1) λ2 = −l3(µ2)/ l2(µ2) λ3 = −l3(µ3)/ l4(µ3). (10)

The complex stress functions can be easily calculated (the isotropic case was studied in
[12]):

8′1(z1) = −Ac
4

µ3λ2λ3− µ2

1

2c + iz1

(z1− ic)2

8′2(z2) = −Ac
4

µ1− µ3λ1λ3

1

2c + iz2

(z2− ic)2
(11)

8′3(z3) = −Ac
4

µ2λ1− µ1λ2)

1

2c + iz3

(z3− ic)2

where1 = µ2−µ1+λ2λ3(µ1−µ3)+λ1λ3(µ3−µ2) andzk = x+µkz = x+ znk + izmk,
nk = Re[µk], mk = Im[µk], k = 1, 2, 3. Do not confuse the complex ’coordinates’zk and
the real coordinatez.
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(a)

(b)

(c)

Figure 3. The angle-dependent coefficients in equation (12) for KSCN atT = TC − 5 K:
(a) χiAc/2 (Å), i = 1, 2, 3; (b) ϑiAc/2 (Å), i = 1, 2, 3; (c) ωiAc/2 (Å), i = 1, 2, 3; (d) mi ,
i = 1, 2, 3.

4. Crystal line KSCN

The material constants used are available in our previous paper [9]. By an inspection of
equation (9), which is the cubic equation with respect toµ2, it turns out that all roots are
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(d)

Figure 3. (Continued)

purely imaginary for KSCN, i.e.nk = 0, k = 1, 2, 3. Then the displacements are

U(x, z) = Ac

2

3∑
i=1

χi(φ)

[
cx

x2+ (c −miz)2 + tan−1

(
x

c −miz
)]

W(x, z) = Ac

2

3∑
i−1

ωi(φ)

[
c(c −miz)

x2+ (c −miz)2 − 1+ 1
2 ln

(
x2+ (c −miz)2

c2

)]
(12)

V (x, z) = Ac

2

3∑
i=1

ϑi(φ)

[
cx

x2+ (c −miz)2 + tan−1

(
x

c −miz
)]

where the angle-dependent coefficientsχi(φ), ωi(φ), ϑi(φ) andmi(φ) depend on the elastic
moduli. Instead of complicated explicit formulae we have plotted them in figure 3. The
distortion of the surface that one obtains by puttingz = 0 in equations (12) and its 3D plot
is shown in figure 4. Of course, it depends on the orientation of the APB. The displacement
W along thez axis consists of a rapidly decaying algebraic part and a gradually descending
logarithmic term. In figure 5, we show the displacementW in the APB centrex = 0
referred toW at the distancex = 10c, where the algebraic term becomes small. Note that
the temperature-dependent quantities areA and dAPB only and the figures are drawn for
the temperatureT = TC − 5 K. From figures 4 and 5 it follows that the deformation has
a bump shape of typical height about 0.2Å and width about 10 nm, which depend only
weakly on the APB orientation.

5. Crystalline Hg2Br 2

In the case of mercury bromide, equations (12) are again valid in a wide range of angles.
In the small intervals 37–43◦ and 49–55◦ the rootsµk, k = 1, 2, 3, are complex with a non-
zero real part and then the equations for the displacements become more complicated. In
figures 6 and 7 the angle-dependent wall thickness and the amplitude of the stress component
σz respectively are plotted [9]. In figure 8 the deformation of the crystal surface is shown,
for the angle 45◦. The angle-dependent displacementW(x = 0, z = 0) of the intersection
of the APB and the surface, referred to the displacementW(x = 10c, z = 0), is drawn
in figure 8. The distance 10c = 20dAPB/π of the reference point also depends on the
angle and typically reads about 1500Å. The main difference from KSCN is the very small
distortion of the surface. Besides the bump occurring for negativeA, there exists a range
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Figure 4. Deformation of the crystal surface in KSCN, for the angleφ = 0◦ andT = TC−5 K.
The APB plane isx = 0 and its thickness is denoted byd.

Figure 5. Angular dependence of the surface distortion (displacementW ) parallel toz in the
APB centre (x = 0), counting from the displacementW at the distancex = 10c (i.e. about
150 Å).

of angles with positiveA and a valley-shaped deformation of the surface (figures 6–8).
The amplitude of the surface deformation is extremely small in comparison with KSCN,
approaching only several hundredths of anÅngstr̈om.

6. Conclusions

We have estimated the deformation of the crystal surface caused by the presence of the APB
in the anisotropic materials. First, the bulk crystal was considered and the APB structure
and internal stresses were obtained using a standard Landau approach. Then it was assumed
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Figure 6. The angular dependence of the APB thicknessd = dAPB and the amplitudeA of the
internal stress componentσz in Hg2Br2 for T = TC − 5 K.

that in the semi-infinite crystal the structure of the APB near the surface is the same as in
the bulk. Under such an assumption it was possible to calculate analytically the deformation
of the surface corresponding to the release of internal stresses. The approximations made
should be noted. Firstly, the constant APB profile up to the (undeformed planar) surface is
reasonable for the long-range forces occurring in ferroelectrics and ferroelastics. We do not
consider situations which would change this simple characteristic of the surface, e.g. extra
atoms deposited at the surface or surface reconstruction. Secondly, the surface deformation
caused by the internal stresses should reversibly cause a change in the APB profile near the
surface due to the coupling of the OP and strain tensor in the free energy. In other words
we should minimize the free energy with respect to both the deformations and the OP, but
that would lead to a complicated 3D problem. For simplicity the APB profile was kept
fixed all the time and only the elastic part of the free energy was minimized. This means
that the results obtained overestimate real deformations, but corrections are assumed to be
small [12].

Two materials KSCN and Hg2Br2 were quantitatively analysed. In KSCN the bump-
shaped distortion of the surface depends on the APB orientation. The angular dependence
of the bump’s height (figure 5) is in accord with the etched pattern observed in [2, 15].

Its typical height atT = TC − 5 K is rather small, about 0.2̊A and its width is more
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Figure 7. Deformation of the crystal surface in Hg2Br2, at φ = 45◦ andT = TC − 5 K. The
APB plane isx = 0 and its thickness is denoted byd.

Figure 8. Angular dependence of the surface distortionW parallel to thez axis in the APB
centre(x = 0), counting from the distortionW at the distancex = 10c (i.e. about 1500̊A).

than 10 nm (figure 4). Owing to the linear temperature dependence, our formulae give a
height of nearly 1Å at T = TC −25 K. Since this value is a fraction of the lattice constant,
the lattice defects (such as steps at the surface) dominate the deformations coming from
the boundaries. Therefore the observation of such a tiny effect requires a molecularly flat
and perfect crystal surface, and the high resolution of scanning methods [16]. Recently
great progress has been made in this field. Ferroelectric domains and domain boundaries
have been observed at the perfect surface of a TGS crystal by the atomic force microscopy
(AFM) method [17, 18]. The topographic resolution (vertical to the surface) was 0.5Å and
it could even reach 0.1̊A. The horizontal resolution was about 8 nm. Comparing this with
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the calculated example of KSCN we conclude that the surface deformation caused by the
APB could be large enough to be observed by AFM. Of course such crystal must have a
perfect surface. Let us assume that there are still a certain number of point defects, which
also deform the surface. The deformation of the point defect has the shape of an isolated
mountain and it can be in principle distinguished from the roof-like distortion (figure 4)
caused by the APB.

In the case of Hg2Br2 the deformation of the surface possesses the shape of a bump or
a valley depending on the APB orientation, but its magnitude is extremely small.

Since the stresses in FDW and APB are comparable [9, 10, 19], deformation of the same
order should also appear around the intersection of the FDW with the surface. However,
this tiny effect will be masked by strains arising from the matching of the bulk ferroelastic
domains [20].
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